Non-ordinary state based Peridynamics

Correspondence Peridynamics

The correspondence formulation is a non-ordinary state-based formulation provided by [14]. It has the goal to apply classical models to Peridynamics.

The non-local deformation gradient is defined as

\[\mathbf{F}=\int_{\mathcal{H}}\underline{\omega}\langle \boldsymbol{\xi}\rangle\underline{\mathbf{Y}}\langle \boldsymbol{\xi}\rangle\otimes\underline{\mathbf{X}}\langle \boldsymbol{\xi}\rangle dV \cdot \mathbf{K}^{-1}\]

with the positive definite shape tensor as

\[\mathbf{K}=\int_{\mathcal{H}}\underline{\omega}\langle \boldsymbol{\xi}\rangle\underline{\mathbf{X}}\langle \boldsymbol{\xi}\rangle\otimes\underline{\mathbf{X}}\langle \boldsymbol{\xi}\rangle dV\]

Positive definiteness in numerics

In numerical applications if bonds break the shape tensor is positive semi definite. $\det\mathbf{K}=0$ can occur and the inversion of the shape tensor won't work.

Based on this definition strain measures can be created to calculate the Cauchy stresses

\[\boldsymbol{\sigma} = f(\mathbf{F}, t, T, ...)\]

To get the force densities the First-Piola Kirchhoff stress tensor has to be calculated by

\[\mathbf{P} = \text{det}(\mathbf{F})\boldsymbol{\sigma}\mathbf{F}^{-T}\]

and finaly the force density vector can be determined as

\[\underline{\mathbf{T}} = \underline{\omega}\langle \boldsymbol{\xi}\rangle\mathbf{P}\mathbf{K}^{-1}\mathbf{\xi}\]

The 2D plane strain or plane stress models are represented in the Cauchy stresses by assuming that the strain in the third direction are zero or the stresses.

Zero-energy modes

For correspondence models, the so called zero-energy modes could occur [15]. These modes are non-physical and lead to unstable or unreasonable solutions. Several stabilization methods were published to overcome this problem [16], [17], [18], [19],[20],[21].

A promising approach implemented as global control in PeriLab was published by Wan et al. in 2019 [22]. Instead of a bond-based stabilization method proposed by Silling [23] Wan et al. developed a state-based stabilization method. As positive side effect this method stabilizes the solution for anisotropic material as well. The corrected force density state $\underline{\mathbf{T}}^C$ with suppression of the zero-energy mode is:

\[\underline{\mathbf{T}}^C=\underline{\mathbf{T}}+\underline{\mathbf{T}}^S.\]

Following Wan et al. \cite{WanJ2019} the suppression force density state $\underline{\mathbf{T}}^S$ is:

\[\underline{\mathbf{T}}^S\langle \boldsymbol{\xi}\rangle = \underline{\omega}\langle\boldsymbol{\xi}\rangle\mathbf{C}_1\underline{\mathbf{z}}.\]

with $\underline{\mathbf{z}}$ as the non-uniform deformation state

\[\underline{\mathbf{z}}\langle \boldsymbol{\xi}\rangle= \underline{\mathbf{Y}}\langle\boldsymbol{\xi} \rangle-\mathbf{F}\boldsymbol{\xi}\]

caused by the zero-energy mode. If the approximated non-local deformation gradient $\mathbf{F}$ exactly maps each undeformed bond to the deformed configuration no zero-energy mode occur. In that case the non-uniform deformation state is zero and the corrected force density state $\underline{\mathbf{T}}^C$ is equal to the force density state $\underline{\mathbf{T}}$. The second order tensor $\mathbf{C}_1$ is given as

\[\mathbf{C}_1=\mathbf{C}\cdot\cdot\mathbf{K}^{-1},\]

utilizing the elasticity tensor.

Bond-associated correspondence Peridynamics

Matrix based approach

Redifinition of shape tensor

For the derivation the shape tensor is defined as $\mathbf{D}$

In the discretized form, the shape tensor for material point $i$ is computed as the weighted sum over all neighbors: $\mathbf{D}_i = \sum_{j \in \mathcal{H}_i} \underline{\omega}_{ij} V_j \underline{\mathbf{X}}_{ij} \otimes \underline{\mathbf{X}}_{ij}$ where $\underline{\omega}_{ij}$ is the influence function, $V_j$ is the volume of material point $j$, and $\underline{\mathbf{X}}_{ij} = \mathbf{x}_j - \mathbf{x}_i$ is the undeformed bond vector state.

The deformation gradient tensor for material point $i$ is calculated using the discretized correspondence relation:

\[\mathbf{F}_i = \mathbf{I} + \left[ \sum_{j \in \mathcal{H}_i} \underline{\omega}_{ij} V_j \underline{\mathbf{U}}_{ij} \otimes \underline{\mathbf{X}}_{ij} \right] \mathbf{D}_i^{-1}\]

where $\mathbf{I}$ is the identity tensor and $\underline{\mathbf{U}}_{ij} = \mathbf{u}_j - \mathbf{u}_i$ is the displacement vector state between material points $i$ and $j$.

Under the assumption of small deformations, the linearized strain tensor is computed from the symmetric part of the displacement gradient:

\[\boldsymbol{\varepsilon}_i = \frac{1}{2}(\mathbf{F}_i + \mathbf{F}_i^T) - \mathbf{I}\]

Substituting leads to:

\[\boldsymbol{\varepsilon}_i = \frac{1}{2} \sum_{k \in \mathcal{H}_i} V_k\underline{\omega}_{ik} \left[\left( \underline{\mathbf{U}}_{ik} \otimes \underline{\mathbf{X}}_{ik}\right) \mathbf{D}_i^{-1} + \mathbf{D}_i^{-T} \left( \underline{\mathbf{X}}_{ik} \otimes \underline{\mathbf{U}}_{ik}\right)\right]\]

To facilitate the matrix formulation, a strain-displacement operator is introduced. This operator relates the displacement field to the strain tensor through linear relationships.

Two auxiliary vectors are defined for each bond $ik$:

\[\mathbf{B}_{1,ik} = \underline{\mathbf{X}}_{ik}^T \mathbf{D}_i^{-1}\]

and

\[\mathbf{B}_{2,ik} = \mathbf{D}_i^{-T} \underline{\mathbf{X}}_{ik}\]

The strain-displacement operator $\mathbf{B}_{ik}$ is constructed as a third-order tensor with components:

\[ B_{ik,mnp} = \frac{1}{2}\left( \delta_{mp} B_{1,ik,n} + \delta_{np} B_{2,ik,m}\right) $$ where $\delta_{ij}$ is the Kronecker delta, and $m,n,p$ are spatial indices. This tensor formulation allows the strain computation to be expressed compactly in index notation: $$\varepsilon_{i,mn} = \sum_{k \in \mathcal{H}_i} V_k\underline{\omega}_{ik} B_{ik,mno} \underline{U}_{ik,o} = \sum_{k \in \mathcal{H}_i} V_k\underline{\omega}_{ik} B_{ik,mno}(U_{k,o}-U_{i,o})\]

The bond force density vector is computed using the linearized constitutive relation:

\[ \begin{aligned} \underline{\mathbf{T}}_{ij} &= \underline{\omega}_{ij}\boldsymbol{\sigma}_i \mathbf{D}_i^{-1}\underline{\mathbf{X}}_{ij} \\ &= \underline{\omega}_{ij}\left(\mathbf{C}_i:\boldsymbol{\varepsilon}_i\right) \mathbf{D}_i^{-1}\underline{\mathbf{X}}_{ij} \\ &= \underline{\omega}_{ij}\underline{\mathbf{X}}_{ij}^T \mathbf{D}_i^{-T} (\mathbf{C}_i:\boldsymbol{\varepsilon}_i)^T\\ &= \underline{\omega}_{ij}\underline{\mathbf{X}}_{ij}^T \mathbf{D}^{-1}_i (\mathbf{C}_i:\boldsymbol{\varepsilon}_i) \end{aligned} $$ The stiffness matrix components are derived separating the displacement vector from the strain tensor. To do so, the tensor contraction $\mathbf{C}_i : \mathbf{B}_{ik}$ in index notation becomes: $$[\mathbf{C} : \mathbf{B}_{ik}]_{mnq} = C_{i,mnop} B_{ik,opq}\]

Combining the strain-displacement relationship with the force calculation from the stiffness matrix components are:

\[ \mathbf{K}_{ij} = -\underline{\omega}_{ij} V_j V_k \underline{\omega}_{ik} \mathbf{D}_i^{-1} \underline{\mathbf{X}}_{ij} [\mathbf{C} : \mathbf{B}_{ik}] $$ with the explicit index notation: $$ K_{ij,mo} = -\underline{\omega}_{ij} V_j V_k \underline{\omega}_{ik} \sum_{n,p} [\mathbf{C} : \mathbf{B}_{ik}]_{mno} [D_i^{-1}]_{np} X_{ij,p} $$ ### Zero energy mode compensation The global control [WanJ2019](@cite) is introcuded in matrix form . The corrected force density state $\underline{\mathbf{T}}^C$ combines the original correspondence force with a stabilization term: $$\underline{\mathbf{T}}^C=\underline{\mathbf{T}}+\underline{\mathbf{T}}^S\]

where $\underline{\mathbf{T}}$ is the original correspondence force density state and $\underline{\mathbf{T}}^S$ is the suppression force density state. Following Wan et al. \cite{WanJ2019}, the suppression force density state is defined as:

\[ \underline{\mathbf{T}}^S\langle \boldsymbol{\xi}\rangle = \underline{\omega}\langle \boldsymbol{\xi}\rangle\mathbf{Z}\underline{\mathbf{z}} $$ where $\mathbf{Z}$ is the zero-energy stiffness tensor and $\underline{\mathbf{z}}$ is the non-uniform deformation state. The non-uniform deformation state $\underline{\mathbf{z}}$ quantifies the deviation between the actual deformed configuration and the configuration predicted by the correspondence deformation gradient: $$ \underline{\mathbf{z}}\langle \boldsymbol{\xi}\rangle= \underline{\mathbf{Y}}\langle\boldsymbol{\xi} \rangle-\mathbf{F}\boldsymbol{\xi} $$ The second-order zero-energy stiffness tensor $\mathbf{Z}$ is constructed using the elasticity tensor from the constitutive relation: $$\mathbf{Z}=\mathbf{C}:\mathbf{D}^{-1}\]

where $\mathbf{C}$ is the elasticity tensor and $\mathbf{D}^{-1}$ is the inverse shape tensor.

For the discrete implementation, the non-uniform deformation state for bond $ij$ is expressed in terms of displacement differences:

\[ \begin{aligned} \underline{\mathbf{z}}_{ij} &= \underline{\mathbf{Y}}_{ij}-\mathbf{F}\underline{\mathbf{X}}_{ij}\\ &= \underline{\mathbf{X}}_{ij}+\underline{\mathbf{U}}_{ij}-\mathbf{F}\underline{\mathbf{X}}_{ij}\\ &= \underline{\mathbf{U}}_{ij} - \left( \sum_{k \in \mathcal{H}_i} \underline{\omega}_{ik} V_k \underline{\mathbf{U}}_{ik} \otimes \underline{\mathbf{X}}_{ik}\right) \mathbf{D}_i^{-1}\underline{\mathbf{X}}_{ij}\\ &= \underline{\mathbf{U}}_{ij} - \sum_{k \in \mathcal{H}_i} \underline{\omega}_{ik} V_k \underline{\mathbf{U}}_{ik} (\underline{\mathbf{X}}_{ik}^T \mathbf{D}_i^{-1}\underline{\mathbf{X}}_{ij})\\ &=\underline{\mathbf{U}}_{ij}\left[\mathbf{I} - \sum_{k \in \mathcal{H}_i} \underline{\omega}_{ik} V_k (\underline{\mathbf{X}}_{ik}^T \mathbf{D}_i^{-1}\underline{\mathbf{X}}_{ij})\right] \end{aligned} $$ $$ \begin{aligned} \underline{\mathbf{T}}^S_{ij} &= \mathbf{Z}_i\underline{\mathbf{U}}_{ij}\left[\mathbf{I} - \sum_{k \in \mathcal{H}_i} \underline{\omega}_{ik} V_k (\underline{\mathbf{X}}_{ik} \otimes \mathbf{D}_i^{-1}\underline{\mathbf{X}}_{ij})\right] \\ &=(\mathbf{C}_i:\mathbf{D}_i^{-1})\underline{\mathbf{U}}_{ij}\left[\mathbf{I} - \sum_{k \in \mathcal{H}_i} \underline{\omega}_{ik} V_k (\underline{\mathbf{X}}_{ik}^T \mathbf{D}_i^{-1}\underline{\mathbf{X}}_{ij})\right] \end{aligned} $$ The stabilization terms can be directly incorporated into the matrix formulation. The additional stiffness matrix components arising from the zero-energy mode compensation are: $$\mathbf{K}^S_{ij} = -\left[\mathbf{I} - \sum_{k \in \mathcal{H}_i} \underline{\omega}_{ik} V_k (\underline{\mathbf{X}}_{ik}^T \mathbf{D}_i^{-1}\underline{\mathbf{X}}_{ij})\right](\mathbf{C}:\mathbf{D}_i^{-1})V_i\]

The corresponding transpose terms are:

\[\mathbf{K}^S_{ji} = -\left[\mathbf{I} - \sum_{k \in \mathcal{H}_i} \underline{\omega}_{ik} V_k (\underline{\mathbf{X}}_{ik}^T \mathbf{D}_i^{-1}\underline{\mathbf{X}}_{ij})\right](\mathbf{C}:\mathbf{D}_i^{-1}) V_j\]

The diagonal terms ensure equilibrium by summing all off-diagonal contributions:

\[\mathbf{K}^S_{ii} = -\sum_{\substack{\ell \in \mathcal{H}_i \\ \ell \neq i}} \mathbf{K}^S_{i\ell}\]

The advantage of this stabilization approach lies in its seamless integration with the matrix-based formulation. The stabilization stiffness terms $\mathbf{K}^S$ are simply added to the correspondence stiffness matrix $\mathbf{K}$, yielding a stabilized system:

\[(\mathbf{K} + \mathbf{K}^S)\mathbf{u} = \mathbf{F}_{ext}\]