- [1]
- F. Bobaru, J. T. Foster, P. H. Geubelle and S. A. Silling. Handbook of Peridynamic Modeling. Advances in Applied Mathematics (CRC Press, 2016).
- [2]
- D. J. Littlewood, M. L. Parks, J. T. Foster, J. A. Mitchell and P. Diehl. The Peridigm Meshfree Peridynamics Code. Journal of Peridynamics and Nonlocal Modeling (2023).
- [3]
- C. Willberg, L. Wiedemann and M. Rädel. A mode-dependent energy-based damage model for peridynamics and its implementation. Journal of Mechanics of Materials and Structures 14, 193–217 (2019).
- [4]
- C. Willberg, J.-T. Hesse, M. Garbade, M. Rädel, F. Heinecke, A. Schuster and A. Pernatii. A user material interface for the Peridynamic Peridigm framework. SoftwareX 21, 101322 (2023).
- [5]
- J.-T. Hesse, C. Willberg, R. Hein and F. Winkelmann. Peridynamic framework to model additive manufacturing processes. PAMM n/a, e202300033 (2023), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.202300033.
- [6]
- C. Willberg, J.-T. Hesse and A. Pernatii. PeriLab - Peridynamic Laboratory. SoftwareX 26 (2024).
- [7]
- C. Willberg, J.-T. Hesse, F. Winkelmann and R. Hein. Peridynamic Framework to Model Additive Manufacturing Processes. Advanced Theory and Simulations n/a, 2400818 (2024), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adts.202400818.
- [8]
- S. Oterkus, E. Madenci and A. Agwai. Peridynamic thermal diffusion. Journal of Computational Models 265, 71–96 (2014).
- [9]
- J. Trageser and P. Seleson. Bond-Based Peridynamics: a Tale of Two Poisson's Ratios. Journal of Peridynamics and Nonlocal Modeling 2, 278–288 (2020).
- [10]
- S. A. Silling, M. Epton, O. Weckner, J. Xu and E. Askari. Peridynamic States and Constitutive Modeling. Journal of Elasticity 88, 151–184 (2007).
- [11]
- M. R. Tupek. Extension of the peridynamic theory of solids for the simulation of materials under extreme loadings. Ph.D. Thesis, Massachusetts Intitute of Technology (2014).
- [12]
- M. Breitenfeld, P. Geubelle, O. Weckner and S. A. Silling. Non-ordinary state-based peridynamic analysis of stationary crack problems. Computer Methods in Applied Mechanics and Engineering 272, 233–250 (2014).
- [13]
- H. Chen. Bond-associated deformation gradients for peridynamic correspondence model. Mechanics Research Communications 90, 34–41 (2018).
- [14]
- P. Li, Z. Hao and W. Zhen. A stabilized non-ordinary state-based peridynamic model. Computer Methods in Applied Mechanics and Engineering 339, 262–280 (2018).
- [15]
- M. Tupek and R. Radovitzky. An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures. Journal of the Mechanics and Physics of Solids 65, 82–92 (2014).
- [16]
- [17]
- [18]
- J. Wan, Z. Chen, X. Chu and H. Liu. Improved method for zero-energy mode suppression in peridynamic correspondence model. Acta Mechanica Sinica 35, 1021–1035 (2019).
- [19]
- S. A. Silling. Stability of peridynamic correspondence material models and their particle discretizations. Computer Methods in Applied Mechanics and Engineering 332, 42–57 (2017).
- [20]
- S. Oterkus, E. Madenci and A. Agwai. Fully coupled peridynamic thermomechanics. Journal of the Mechanics and Models of Solids 64, 1–23 (2014).
- [21]
- O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. 7th Edition (Butterworth-Heinemann, 2013).
- [22]
- C. Willberg. Development of a new isogeometric finite element and its application for Lamb wave based structural health monitoring. Dissertation, Otto von Guericke University Magdeburg (2012). Open-Access-Publikation.
- [23]
- M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Vol. 55 of Applied Mathematics Series (United States Department of Commerce, National Bureau of Standards; Dover Publications, Washington D.C.; New York, 1983); p. 878. [June 1964], Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first edition.
- [24]
- A. Pernatii, U. Gabbert, K. Naumenko, J.-T. Hesse and C. Willberg. A Penalty Method for Coupling of Finite-Element and Peridynamic Models. PAMM 22, e202200151 (2023), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.202200151.
- [25]
- D. J. Littlewood, J. D. Thomas and T. Shelton. Estimation of the Critical Time Step for Peridynamic Models. In: Proceedings of the 12th U.S. National Congress on Computational Mechanics (2013).
- [26]
- E. Madenci and E. Oterkus. Peridynamic Theory and Its Applications (Springer New York, 2014).