[1]
F. Bobaru, J. T. Foster, P. H. Geubelle and S. A. Silling. Handbook of Peridynamic Modeling. Advances in Applied Mathematics (CRC Press, 2016).
[2]
D. J. Littlewood, M. L. Parks, J. T. Foster, J. A. Mitchell and P. Diehl. The Peridigm Meshfree Peridynamics Code. Journal of Peridynamics and Nonlocal Modeling (2023).
[3]
C. Willberg, L. Wiedemann and M. Rädel. A mode-dependent energy-based damage model for peridynamics and its implementation. Journal of Mechanics of Materials and Structures 14, 193–217 (2019).
[4]
C. Willberg, J.-T. Hesse, M. Garbade, M. Rädel, F. Heinecke, A. Schuster and A. Pernatii. A user material interface for the Peridynamic Peridigm framework. SoftwareX 21, 101322 (2023).
[5]
[6]
C. Willberg, J.-T. Hesse and A. Pernatii. PeriLab - Peridynamic Laboratory. SoftwareX 26 (2024).
[7]
C. Willberg, J.-T. Hesse, F. Winkelmann and R. Hein. Peridynamic Framework to Model Additive Manufacturing Processes. Advanced Theory and Simulations n/a, 2400818 (2024), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adts.202400818.
[8]
[9]
[10]
S. A. Silling, M. Epton, O. Weckner, J. Xu and E. Askari. Peridynamic States and Constitutive Modeling. Journal of Elasticity 88, 151–184 (2007).
[11]
[12]
D. J. Littlewood, J. D. Thomas and T. Shelton. Estimation of the Critical Time Step for Peridynamic Models. In: Proceedings of the 12th U.S. National Congress on Computational Mechanics (2013).
[13]
E. Madenci and E. Oterkus. Peridynamic Theory and Its Applications (Springer New York, 2014).