Seminar 8: Additive manufacturing
\[\underline{\omega}\langle\boldsymbol{\xi}\rangle \in \mathcal{H}_{\textbf{x}} = \left\{\begin{array}{l} 0 \qquad\text{for }t<t_{activate}\\ 1 \qquad\text{for }t \geq t_{activate}\\ \end{array}\right.\]
figure (taken from [9]).
Additive Models:
Test:
Additive Model: "Simple"
Print Temperature: 100
\[\boldsymbol{\varepsilon}=\boldsymbol{\varepsilon}_{mechanical} + \boldsymbol{\varepsilon}_{thermal}.\]
\[\boldsymbol{\varepsilon}_{thermal} =- \boldsymbol{\alpha}\tau\]
\[\boldsymbol{\sigma}=\mathbf{C}\cdot\cdot\left(\boldsymbol{\varepsilon}_{mechanical} - \boldsymbol{\alpha}\tau \right)\]
For bond 1 the stresses are zero, if ${\varepsilon}_{mechanical} = \boldsymbol{\alpha}\tau$
during a printing process this holds true for each step $t$. Assumed that $\tau_{i,t_{print}}>\tau_{i,t_{print} + \Delta t}$, leads to following effect. $t_{j,print} = t_{i,print} + \Delta t$ $\varepsilon_{i,mechanical} = \boldsymbol{\alpha}\tau_{i,t_{print} + \Delta t}$ $\varepsilon_{j,mechanical} = \boldsymbol{\alpha}\tau_{j,t_{print}}$
\[\varepsilon_{i,mechanical}\neq\varepsilon_{j,mechanical}\]
This leads to internal stresses or forces.
using LinearAlgebra
function K_stiff(np, c, omega, V)
K=zeros(np,np)
for iID in 1:np
for jID in -nn:nn
if jID != 0 && iID + jID > 0 && iID + jID < np + 1
xi = L*abs(jID)
K[iID, iID + jID] -= 0.5 * c[iID] / xi * V * omega[iID, iID + jID]
K[iID, iID] += 0.5 *c[iID] / xi * V * omega[iID, iID + jID]
end
end
end
K[np, :] .= 0
K[:, np] .= 0
K[np, np] = 1
return K
end
E = 1
V = 1
L = 1
np = 8
nn = 2
delta = 1
u = collect(1:np)
omega=ones(np, np)
##
c=zeros(np)
c .= 2*E/delta^2
K_f = K_stiff(np, c, omega, V)
K_f[1,:] .= 0; K_f[:,1] .= 0; K_f[1,1] = 1
F=K_f*u
c[6]=2.0 .*c[6]
K_s = K_stiff(np, c, omega, V)
K_s[1,:] .= 0; K_s[:,1] .= 0; K_s[1,1] = 1
u_error=inv(K_s)*F
display(u-u_error)
interal_force = K_s*(u-u_error)
display(internal_force)